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1. Introduction . I ~

We are interested in finding an adequate model for a

scalar observation set I y(s),s = (s1,s2) ~ obtained from

a homogeneous Gaussian random field , where is a square

grid of side N1, so that 1 ~ 
s~ ~ N1, i = 1,2. The random

field is not necessarily isotropic. Such problems are of

interest in various applications such as plant modeling 111,

image restoration [2-3], seismology [4], and image modeling

[5—6]

In situations such as these, any observation at (i ,j )  is

statistically dependent on the observations over a neighbor-

hood of (i ,j ) ,  in contrast with the familiar univariate time

series models, where the observation at any instant is depen-

dent only on the past observations. Neighborhood models seem

to be more appropriate for images since for an image there is

no essential difference between the neighbors on one side and

those on the other . Our prime interest in this paper is in

developing decision rules for choosing an appropriate neigh-

borhood from among a given set of neighborhoods. For instance ,

the set of north , south , east and west neighbors constitutes

a particular choice of neighborhood .

The main approaches to choosing neighbors in model build-

ing are the following :

-__
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1) Pairwise testing

2) Aka ike ’s information cr iter ion (AIC )

3) The Bayes ian  approach

The reader is referred to the statistical Literature [71

for a discussion of pairwise testing . The main criticisms

of th i s  approach are tha t  the r e su l t ing  decision rules  are

not consistent, i . e . ,  the p robab i l i ty  of choosing an incor-

rect model does not go to zero even as the number of obser-

vations goes to infinity . Also , the dec ision rules are not

transitive , i.e. , given three hypotheses C1, C2, and C3, if

C
1 is preferred to C2 and C2 is preferred to C3, then it

does not fol low that C
1 is p r e f e r r ed to C 3 [81.

The AIC method [9] considers the so-called AIC statistics

of , the given observat ions for  each model . The bes t model is

the one which minimi zes , the AIC statistic. This method gives

transiti~ie but not consistent decision rules [lc~ .

In the Bayesian approach [ 8) of f it t ing  models to data ,

various possible models are postulated as mutually exclusive

hypotheses C1, 1 i r. The hypothesis that maximizes  the

posterior probabi l ity density P ( C
1~
y (s) , s € is chosen as

the correct model with minimum probability of error . This

approach involves o b t a i n i ng an expression for  the l ikel ihood

of the observations and integrating it over the parameters

using an appropriate prior probability density function .
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In this  paper we propose a Bayesian method fo r finding

a neighborhood mode ]. for  a random f ie ld . We take a transform

domain approach using the spectral representat ion for  the

random f i e ld . Spec i f ica l ly ,  us ing the asymptotic Gaussian

propert ies  of the f i n i t e  Fourier t r ans fo rms  {Z ( f l ,  A ~

where is a set of discrete frequencies  A = ( A 1, A 2 ) w i t h

components 
~~ 

= 2 n k . / N 1, 1 ~ k .  ~ N 1, I = 1, 2 , an exp l i c i t

expression i3 ~jiven for p(Z(A ), A E 
~
?A I9 k , Ck) ,  the dependence

on the parameters appearing through the spectral density

function of the field .

We integrate this probability density function w.r.t.

arbitrary but regular prior probability density functions

p (
~ k

IC k) to obtain p (Z(A ), A E C AIC k). Using this expression

and the prior probabilities P (Ck) ,  1 ~ k ~ r of the hypothesis ,

a decision rule for choosing a model with minimum probability

of error is designed.

The usual criticisms against the use of prior dens ities

are answered by showing that the contributions of these terms

are of order 0(1) and hence asymptotically insignificant . A

decision rule suppressing the terms involving the prior den-

sities is also given. Though this rule does not have the

minimum error rate property , it is asymptot ica l ly consistent.

The theory developed here has also been considered in an

earlier report [5) motivating the use of statistical inference

I:
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theory for image modeling. The transform domain approach

used in this paper can be easily extended to include moving

average and autoregressive moving average models in a unif ied

representation, viz ., the spectral density function. Various

special cases of interest , including random fields specif ied

by one—sided models, and random processes represented by bi—

lateral and unilateral models , are considered .

The organization of the paper is as follows: In Section

2, an explicit expression is derived for the probability den-

sity of the transforms of the observations given the neighbor-

hood model obeyed by the observations. In Section 3, the

problem of finding the appropriate neighborhood is posed as

a class selection problem and decision rules are designed

for choosing this neighborhood . Section 4 discusses the

properties of the decision rules. Some special cases of the

theory developed here are considered in Section 5. A brief

discussion is given in Section 6, and some appl icat ions are

considered in Section 7.
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2. Preliminaries

A. Definitions and Notation : We are given a set of obser-

vations Fj(s), s = (s 1, s2 ) € ci
5~, 

where is a square grid of

side N1 and ~ ~ s~ ~ N~~, i = 1,2. The random field is homo-

geneous and Gaussian bu t not necessaril y isotropic. A sto-

chastic field is said to be homogeneous if the following

condition is satisfied :

R(s ,t) = E ( y ( s )  — E ( y ( s ) ) )  (y ( t )  — E (y ( t ) ))

= R1(s - t)

-— i . e . ,  the covariance func t ion  is t rans la t ion invar ian t .

In addition, if the covariance funct ion  R ( s , t) is also invari-

ant to rotation , the random f ield is called isotrop ic. In

general , images are not isotropic and hence the random field

models of interest to us are only homogeneous and not neces-

sarily isotrop ic.

Consider the stochastic f ie ld  (y ( s )  , s E ~~~ sat isfy ing

+ 

k=1 
+ 

~~~ 
= (2.1)

~!s E Q~~, ~~ 
E Q, Yk = 1, 2,...m

= = (q~~~,q~ 2
), k = l,2,...m, 9k ~ (0,0 ) ,

are integers}

Here Cu (s), s ~ is a Gaussian I.I.D. sequence with zero

mean and unit variance. In what follows, for simp l ici ty ,  S

and will be denoted by s and 
~~~~~~ 

dropping the vector notation .
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Eq. (2.1) is characterized by an unknown (m +l) dimensional

vector 0T = (q~T p ) such that  
~~~~

. ~ 0, j = 1,2,.. .m and p > 0.

Eq. (2.1) represents the dependence of an observation at

location (s1, s2) on its neighbors in the direction specified

by Q. When and q~~ take only nonpositive values we obtain

models where the observation at location (s1,s2) is a linear

combination of the observations in a one—sided neighborhood .

When s and q are scalars, (2.1) represents a one—dimensional

autoregressive model. We assume that the coefficient vector

~ in (2.1) is restricted to ensure homegeneity of the stochastic

field .

The two—dimensional z transform of (2.1) where z = (z11 z2)

is a complex vector given by

m 
~~~ 

-1
H ( z 1,z21~~) [1 + 

k=l k l  ~2 ( 2 . 2 )

and the spectral densi ty  func t ion  evaluated at frequency

A = (A 1, X
2) of the field is given by

~A ~A
S ( A ,~~,p)  = P I I H ( e  1

,e 
2
~~~) j I

2 ( 2 . 3 )

j = /1, VA E

To make our notations clear , we consider a few examples. •

In what follows, we drop the vector notation for X.

Example 1: East, West, North, and South model :

Q = { (1 ,0) ,  (0 ,—i ), (—1 ,0) , (0 ,1))

The equation for y(•) is



y ( s 11 s2) + ~1
y ( s

1
+l,s2

) + ~2
y ( s 1,s2-l)

+ q 3y ( s
1

—l , s2 ) + 4 4 y ( s 1, s2+l)  /~u ( s~ s~~)

the transfer function being given by

H(z1, z7,~~) = [1 + ~~1
z

1 
+ ~2

z~~ + ~3
z + ~ 4

z
2]

1

Example 2: One—sided models [11-13)

Q = {(0,—l), (—1 ,—l) , (—1,0)), the corresponding

equation being

y ( s 11 s2) + P1
y ( s 1, s2—l ) + q

2
y ( s

1—l ,s2—l )

+ ~3
y ( s

1-1,s2
) = /~5~ u ( s 11s2

)

The t ransfer  funct ion for  this system is given by

H (z1, z2 ,~~) = [1 + ~1z~~ + ~2z~
1z~~ + ~3

z~
1
)
1

Example 3: Time series models: When s and q are scalars and

the set Q consists of positive and negative integers we

obtain bilateral models [1]. When the set Q consists of

negative integers , we obtain the famijiar autoregressive

models.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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B. Expression for p(Z (A), A Q.S~),)

In this section we are interested in deriving an explicit

expression for  the probabil ity density of the transforms

( Z ( A ) ,  A E ~2 ),) of the observations (y ( s ), s E Q~~), given

that the observations obey the model in (2.1).

To this end , we first obtain an expression for

p (Z(A), A E c2~~j~~, p ) and then integrate over (
~~, p ) by us ing an

arb it rary but otherwise regular prior probability densi ty

p (~~,p). An expression for p (Z(A ), A E c2~~~, p ) is obtained

by using the stochastic propert ies of f i n i t e  Fourier trans-

forms [14—1 6]:

Theorem 1: Consider the f i n i t e  Four ier  t r a n s f o r m s  of the

observations ( y ( s ) ,  s E Q~~) de f ined  over a square gr id N 1xN 1.

Denote the f i n i t e  Fourier transform of (y(s) , s E ~7~ ) by

z (A) = (N1)~~~ E e
_ j A T 5y ( s ) ,  A E

s S j = (2.4)

where is the set of discrete f requenc ies  A = ( A 1, X
2

) wi th

components X~ = 2 l Tk ./N 1, 1 ~ k 1 ~ N 1, i = 1, 2.  Then for  an

i n f i n i t e  observation f i e ld , the f i n i t e  Fourier  t r a n s f o r m s  are

complex normally distributed with zero mean and independently

at different frequences with variances

E (Z(A)Z*(X)) = S~~( A~~~1 P) VA E (2.5)



where
j~\1 jA 2S~~( A I~~IP) = p H H ( e  , e ~) H 2 (2.6)

in which

I I~ I I denotes the modulus of the complex variable r~~•

This theorem involves two approximat ions ; one involves

the asymptotic uncorrelatedness of the random var iables

(z (A), A 
~ ~~~ 

for  d i f f e r e n t  A ’s, and the other involves

equation (2.6). The smoother S~~( X ~ 4~~~) is in the vicinity

of the discrete f r equency pairs A E 
~A ’ the better is the

approximation for moderate values of N 1. If the spectral

density func t ion  S~~( A 11 ~~~) were constant , equality would

hold in ( 2 . 6 )  for  all values of N 1. Otherwise the distribu-

tion theory is exact onl y when the number of observations is

i n f i n i t e.

Using Theorem 1 an expression can immediately be written

for the joint density of the finite Fourier transforms :

.€n p(Z(A), A 
~ ~~~~~~~ 

= —

1 E ~n S ( A ,q,p)
A E
~
1 X 

y

4 ~ I l Z ( ~~) 1 2/s ( X ,~~,p )  ( 2 . 7 )

Subst i tut ing ( 2 . 6 )  in ( 2 . 7) we have

£n p (Z(A) , ~ ~ ~~~~ 
~~~~ = — tn2-n p

j A  jA
— -~~ E £ n j J U (e ,e ,~ ) H

A t~

2 ~~ l ~~ 2
- ~~ — Z I I Z(A) I I / 1 !H(e , e 2~~~) (2.8)

~ A E~L,~
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It is in teres t ing  to compare the expression obtained

here for  the probabil i ty densi ty  of the transforms of obser-

vations and the expressions obtained in Whittle [11. Whittle

starts wi th  an exact expression for  the likelihood of the

noisy variates (u(s), s € ~~~~ Since for  a general neigh-

borhood model the Jacobian of the transformation from the

noisy variates u ( . )  to the observations y ( . )  is d i f f i c u l t  to

evaluate, an approximate expression is used for the determinant .

However , the expression oVDta ined here is not an approximation

to the likelihood func t ion  of the observations as in [1].

The desnity funct ion  considered here is the joint  density of the

f i n i t e  Fourier t ransforms wh ich is a one to one t ransformat ion

wi th  Jacobian uni ty  ( though a general proof can be given to

establish this , a simple derivat ion is given in Appendix II

for  a 4x4 f i e ld) . Consequently, the estimates of ~ , p  obtained

by maximizing p ( Z ( A ) ,  A € Q~~)~~,p )  are onl y approximately the

maximum likelihood estimates. Before proceeding f u r ther we

need the following assumption .

Assumption 1: The f i r s t  and second derivations of
j A  j A  2 2 j A  jA 2E £nHH(e 1,e 2,q

~) I I  and E I I z ( A ) l I  / I I H(e  1,e ) I l
A Ec2X 

XEc
~A

w . r . t .  ~ exist  for  all ~ E Rm .

To obtain p ( Z ( A ) ,  A E D x ) we integrate p ( Z ( A ) ,  A E
~~x l~~

,p )

over (
~~,p) using an appropriate prior probability density

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~ V V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~

function. We do not make any specif ic  assumption about the

structure of the prior probability density functions. They

need be regular but otherwise arbitrary. Letting 0
T = (~t T p)

and per forming the integration

p ( Z ( A ) ,  A E
~l x ) = f f p ( z ( A ) ,  A E c ~~ I~~, p )

p(q, p)d~ dp (2.9)

we arr ive  at

Theorem 2: As the rectangle of observations becomes

large in all dimensions, the probabi l i ty  densi ty

p(Z (A),A Ec2
A
) is given by

£n p(Z(A) , A E~~ ) = - ~~~~ 
-

jA jA
-
~~~ E £nhI H(e 1,e 2

~~ ) l I
2 

+ ~~~
AEQ

A 
-

+ (m+1 ) Vth 2 r r  - (m+l)~~n N — a(N)

— 

~~
n[detV 2

~ ~ 
C (S)] 

— 
+ 0(1/N ) (2 . 10)

i j —

where

~-T (~~T~~ ) = max G(~p,P) 
(2 . 1 1)

~ ER~~, ~
jA jA 2G (~~,p) = - [~~np + ( 1/N ) E ~n I I H ( e  1, e 2

~~ ) I l

~
EQ A . •j A , j A ., 2+ ( l/N ) ~ IZ( A ) I I  / 1 IH(e ~,e 

L~~~~ ) I I  1 (2.12)
A € c

~A
and

a ( N )  = 0 . 5 ( N  + N~ n 271) (2.13)

C

— ~~~~~~~~~ VV_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V -— ~~~~~~ 
_ V  _V  ~~~~~~~~~~~~~~~~~~~~~~~~~
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and 0( 1/N )  denotes a determinis t ic  constant  term behaving

like k1/N for large N where k1 is independent of N .

Theorem 2 gives an explicit expression fo r the probabi li ty

density of the transforms of observations from a stochastic

field characterized by the spectral density function

S
y
(A r~~tP )~

__  - . V~~~iV TII. 
1: 

_ _

~~~~~~~~~~~~~~~~~~~~

V V

~~~~ 
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3. Decision rules for the choice of neighborhoods

For an image it is reasonable to assume that an obser-

vat ion a t (i,j) will not significantly depend on distant

neighbors. Hence we restrict our allowable neighborhood set

to a maximum of eigh t neighbors , East , West , Nor th , and South

and the four diagonal neighbors. Thus our problem is to

find an appropriate set of neighbors among the possible 28

neighborhood sets for the given image.

A. Definition of classes: We formulate the problem of

choice of neighborhood as a class selection problem and derive

optimal decision rules. A class is def ined as a set of models

having the same neighborhood set Q but differing in the para-

meters c~ or p . The class C. consists of models of the form

C1: y (s) + ~~~~~~~~~~ + q~~) = si5~~u ( s )  q~ EQ.~ ~~ ~ 
(0 ,0) (3.1)

such that 
~~~

. .  ~ 0, p1>~ , j  = 1,2,.. .m1, i = 1,2,.. .r , where

r denotes the number of classes. Thus a class consists of

an infinite number of models with the same neighborhood . The

given set of observations (y(s) , s E ~~ ) is said to obey

class C~ if ( y ( s ) ,  s ~~ ) obeys only one model in C~~.

Two classes C. and C. are said to be mutually exclusive if
1 j

the ne ighborhoods they represent d i f f e r  in at least one

neighbor.

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V  - . . .
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Given r mutually exclusive classes (equivalently, distinct

neighborhoods)  C1, I = 1,2,... r , and a set of observations
( y ( s ) ,  s ~ i~~

) ,  our aim is to find the most appropriate class

for  ( y ( s ) , s E cL~). The criterion for appropriateness is

usually defined as a suitable criterion function and a decision

rule for assigning (y(s), s E c~~) to one of the r classes is

designed to minimize the criterion function. The criterion

function can be chosen to reflect the particular needs of the

problem , such as minimizing the average probability of error ,

etc.



V

B. Expression for P(C~~IZ(A )~ A E

We first compute an expression for P(C1fZ(A), A €

the posterior probability density of the transforms of the

given data having been generated by some model in C1, for

every i, i = 1,2,.. .r. Subsequently, we derive optimal

decision rules to minimize the probability of error and

discuss simplifications of the decision rules .

Let = ( 4~~ ,p ~ ) ,~ . — (~ . 11q 121. .. 
~im.  and p (O lC~) be the

prior probability density function of the parameters under

class C1. An expression for P(C~ IZ(A )~ ~
.Ec 2A ) is given by

Theorem 3: Let the observations obey the class C~ . Then

the posterior probability density of the transforms of the

observations is given by

£nP (CJZ(A), A Ec2 A ) = -

1 ~~l ~~2—  2
— ( ( m ~ + l) / 2 ) .e n  N — E L n I I H . ( e  ,e

A E ~ A 
1 -

+ ~~~“ 

~~~~~~~~~ 
~ en det v~~~0

G (o)] -a(N)
i J

+ ( ( m k + l ) / 2 ) ~~n 2rr + £n P(C1) — £n p(Z(A ), A€S
~A
) + 0(1/N)

(3.2)

where

a(N) = 0.5(N+N~n2rr )

~~
T
= ~~T~~~ ) = max {G

~~
(4 1,p.) } (3.3)

4~. ER , p . >O

V -V -



= -[~ np. + (l/N)~~~~~~fl I 1 H1(e 
1 e 2,~~

.)I 1
2

+ (1/NP) ~ II Z ( A ) l I
2/ II H I(e

l,e 2,~~i) l I 2], (3.4)
A€

~ A

p(Z(X), A€
~x) = 

k=l 
A€
~A IC k)P(Ck

) (3.5)

and

P(C.), i = i,~~,...r are the prior probabilities of the classes .

Proof: This follows from Theorem 2 and Bayes ’ rule,

p (Z(A), X€
~A IC.)P(C .)

P(C~ lZ (A)~ 
X€Q x) = (3.6)

~p(Z (A), A€ ~
1A ICk)P(Ck)

‘~l

V_ V - .  V V _ _ ~~~~~ _ V 
—V_  -. —. —- - ---—-V -
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C. Decision rules: Consider a 0-1 loss function L which

ass igns uni t cost to a wrong assignment of ~1asses and zero

cost otherwise , i.e.

L [C., d (y(s) , s~~~5) = C
1
)) = 0 C1 = C

1 
( 3 . 7 )

= 1  C . � C .1 j

Since the finite Fourier transformation is one to one ,

the cost of wrong assignment of the observation set

(y ( s ) , s€ ~1~ ) is the same as the cost of wrong assignment V

of the set ( Z ( A ) , A€Q
A ). Our intention is to choose the decision

rule to minimize the risk function , i.e., minimize J(d), where

J ( d ) = ~~P(C1)fL [C1, 
d(z(A) , A€

~ x )I X

p ( Z ( A ) ,  A~~
2 A I C . ) d I Z ( A ) ,  A €

~
2 A I ( 3 . 8 )

Substituting the loss function in (3.7 ) we have

J(d (z(A ) , A €~~ ) = C.)

= 1 E P ~C .I Z(A) , A€
~ A ) 

p (Z(A) , AU
~A

)dIZ(A) ,

i~ j

(3.9)

The op t imal  decision rule is

d*(Z(A) , A~ s~~) = Ck =
argumen t sup{P(C

~~I Z (A ), A Ec
~A

) V ( 3 .10 )
i

Substituting for the posterior probabili ty function

from Theorem 3 and omitting common terms we have the following

decision rule:

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~ 
_
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Choose class C~,* if

i~ = arg {~~~f {h~~( Z ( A ) ,  A E
~A }) 

(3.11)

where

h .(Z(A ), X€
~ x) = ~~ £n

’
~ . + m . £n N

jA jA
+ ~

. E .tn l IH. (e 1,e 2~~~ ) 1 1 2 
+ m1

.en 21i
A E~ 

1

- £n p(!~jC1
)_ 

~Ln [det V~~ 0 G (O)1( £n P(C
~
) (3.12)
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D. Simp l i f i e d  Decision Rules :  The decision ru le  g iven

in (3.12) involves arbitrary quantities such as prior proba-

bility densities , which for  V
~ he problem considered here are

not known . Hence we suggest a decision rule in which the

prior densities are suppressed . The dec ision ru le  no longer

minimizes the average probability of error but can be shown

to be asympto tical ly  cons istent using a proof s imilar to one

found in [ 1 7 ] .

The s i m p l i f i e d  decision ru le  is:

Choose cl ass i~ if

= arg~~~~~tg .(z(A) , A~~.~~ } }  (3. 13)

where

— ~A jA
q 1 (Z(A), 

A L. .~~) N
~
nP
~ 

+ ~ ~n I l H ~
(e 11 e 2

~~~ ) I I 2 
+ m~~n N

(3.14)

Eq. ( 3 . 13) can be r ewr i t t en  as

g~~( z ( A ) , A € ~~~) = N~ n p .  + !11
k~

fl N (3.15)

where
* — 1 

jA
1 

jX 2 2£n P = ~n p .  + ~~
- ~ £n I  I n .  (e , ,~ .) (3.16)

1 1 A
~
I
~A 

1 ~ V 1

The form of the decision rule in (3.16) is characteristic

of the Bayesian approach [81 (17—191.

- ~~ S~~~~~~-
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4 . Properties of the decision rule

A symptotic consisten~y: One of the important properties

of a decision rule is the consistency property . A decision

rule is sai d to be asymp toticall y consistent if the prohabi-

lity of choosing an incorrec t model given the cor rec t model

goes to zero as the number of obse rva tions goes to inf in ity .

We do no t give an exp l ic i t  proof for the consistency of

the decision rule suggested in the previous section . A proof

similar to that in [17] can be given to establish asymptotic

cons istency of the deci sion rule .

Generality: The theory developed here is valid for auto-

regressive spatial models. The theory can be easily extended

to include moving average and autoregressive moving average

models.

Parsimony: The expression for  the decision f u n c t ion

g~~(z (A) C A
~
Q
A

) bring s out the disadvantage of having too

large a value for  mk .  If we increase mk ,  then p~ decre ases , V

causi ng a decrease in ~ np~ . Thus N~ np~ and m
k~

nN balance

each other .  This il lustrates the desi rab i l i ty  of keep ing the

unknown parameters to a minimum . V

Transitivity: The decisions regarding pairwise comparison

of the classes are transitive . This is because the decision

function g~~( z ( A ) ,  A€
~
2 A

) does not depend on any paramete r V

outside class C...

-~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~
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5. Special cases

In this section we consider two special cases of the

general theory developed in the previous section.

Case (i): Random fields represented by one sided models:

For these cases [11—131 , we have from an extension of a

relation that is valid for a weakly stationary process

~np = ~~~~ 5 f ~~n S ( A ,~~, p ) d A  (5.1) 9

Substituting for Sy
( A ,q,p ) from (2.3), we have

~np = ~~ 5 5 (~~np - £n) IH(e 1A
,~~ I ~~~ A (5.2)

= ~~~~~~~~~ 4~
2
~np - 

~~~ 5 5tn~ lH (e~~~,~~
) 1 l

2 dA ( 5 . 3)
4ir 4 ir ir -

Hence we have

I I ~n ( III (e~~~~) I I~ d~ = 0 (5.3)

Approximating the double integration by double summation ,

( 5 . 3) reduces to

j A 1 j A  2
~ ~~~ IH(e ,e 2~~ ) II 0 (5.4)

Using  ( 5 . 4 ) ,  the s i m p l i f i e d  decision rule becomes : C}~oose

the model k* if

k* = a r g u m e n tlm i n  g~~( z ( A ) ,  A €
~~A )

where

, ~~~~~

= N
~

nP k + mk~~
n N
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Thus the main difference between the one-sided and

neighborhood models is due to the term j
jA j A

~ ~n I!H~ç
(e L ,e ‘~~k

)H
A tc2

x 
-V

Case ( i i)  : One dimensional series represented by

bilateral and unilateral methods [1] :

For th is  case , s and q are all scalars and q takes posi-

tive and negative values. The theory developed for random

f i e lds  carries  through for  this case analogously .  By rep lac-

ing the summation over fi e ld s  by a s ingle  summation we

obtain the results derived in [5].

_ _ _ __ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V._VV. V~~~~~~ - - -V
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6. D i s c U s s i o n

The i n f e r e n c e  of st a t i o n a ry  Ga us s ia n ra ndom f ie lds has

been previously considered by Whittle [1] and Larirnore [41

A useful entity to work with for statistical inference

purposes is the l i ke l i hood  of the observations. For models

where the observation at (i,j) depends only on one sided

neighborhoods , the Jacobian of the transformation from nois .

variates to observations is unity and hence the  l i k e l i h o o d  V

f u n c t i o n  can be easi ly w r i t t e n .  However , fo r  models where  t h ~

observat ion  at (i,j) depends on a ne ighbo rhood , the Jacob ian

of the aforement ioned  t r a n s f o r m a t i o n  is not u n i t y  and is

d i f f i c u l t  to eva lua te . By a pp r o x i m a t i n g  the Jacobian  of

the t r a n s f o r m a t i o n  W h i t t l e  ob ta ins  an a p p r o x i m a t e  e x p r e s s i o n

fo r  the l ikel ihood of observat ions  of a random f i e l d .  Li’~e-

lihood rat io tests and sig n i f i c a n c e  levels  have been used

to identify a neighborhood . The decision rules using pair-

wise hypothes is  tests are not cons i s t en t  and t ra n s i t i v e .

Moreover , Whittle ’s procedure becomes comolicated when models

other than autoregressive are considered. Lastly, even foi

au toregres sive model s, the evaluation of the Jacobian is

a nontrivial task.

Larimore 14] has reconsidered the problem of inference

of random fields . The procedure developed in [4] uses spectral

representation of the random field. Instead of ~he l i k e l i h o o d

-- 
I_I-_I

_ 
i_ __ 

—
~~~~~~~ -~~~~~ 
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of the observat ions , the probability density of the finite

Fourier t r a n s f orms is used for  inf erence . As di scussed in

Section 2, the approxi ma tion involves uncorrela tedness and

variance of the finite Fourier transforms . However , the

term correspon ding to the Jacob ian of the transfo rma tion

is easy to compute once the neighborhood is specified . Also ,

the AIC crite rion has been used for model ide nt if ic ation.

It has been shown [10] that even in the one—dimensional

case the AIC rule is inconsistent; i.e., the probability

of choosing a higher orde r model than the true model is no t

zero even for the case of infinitely many observations.

Consequently, the use of AI C rule for ra ndom f ield model

identification is not desirable.

The theory developed here yields asymptotically (weakly)

consistent decision rules f or choos ing neighborhoods of

models. The simplified decision rule does not involve any

arb itra ry qu antities such as prio r dens it ies.

One of the problems not considered in this paper is

the computational aspects of the method . Maximization of the

probability density function p(Z(A), X €
~
2x I~~

, p ) could be

diff icult for the following reasons:

1) Startincr values for the maximization algorithm are

difficult to obtain.

2) The problem is really a constrained maximizat ion ,

the constraints being laid by the homogeneity requirements.

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3) Of t en  the func t ion  has mu l t iple maxima , a nd i t is

very important  to f i n d  the absolute maxima . Add i t i ona l  work

should be done in this area.

The expressions used for  the probabili ty densi ty of the

transforms of observations are approximate . Recently, an

exact expression for the likelihood function of the obser-

vat ions from a homogeneous random f i e ld  charac te r ized  b y a

parametric model as in (2 . 1 )  has been developed in [ 6 1 .

This fo rmula t ion lends itself to a theoretical trea tment of

many problems in the area of image processing , such as

modeling , segmentation, etc .

V t

_ _ _ _ _ _ _ __ _
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7.  Applicat ions

The theory developed here w i l l  f i nd  app l ica t ions  in

image modeling and tex ture character ization .

Earlier attempts at image modeling have used a one-

dimensional anal ysis on a time series obtained by concatena-

tion of successive rows [13] [20]. This is clearly inadequate

since intuition alone suggests tha t image models should he

inherent ly two-dimensional. Recently,  two—dimensional but

one-sided neighborhood models for  images have been suggested

[21 - 221. Since for images there exists no preferred direc-

tion , one—sided models are not suffic ient to characterize

images.

Recently, stochastic part ial  d i f f e r e n t i a l  equations have

been suggested for images in [2]. No effort has been made

to statistically infer the particular model.

Efforts have been directed towards developing two-dimen-

sional models in [23-24]. An observation at position (i,j)

is assumed to statistically depend on neighbors on every

side within a window of size (2M+l) (2N+l). Instead of using

a truly two-dimensional procedure to infer the window size ,

the constants  M and N, determined by usi ng Akaike ’s FPE

criterion for a one—dimensional , unilateral autore-

gressi ve mo~~1, are used to determine the window s ize .

In this paper we have proposed using the theor y of

I
I ii
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statistical inference to choose the neighborhood for an

image . The choice of neighborhood models under consideration

could be arbitrary as long as they are mutually exclusive .

The models developed should be useful in coding [61,[131, [24J,

segmentation [6 ]  , [ 2 3 ]  and restoration [ 3 ] ,  [ 6 ]  of images as

well as in texture characterization .

V VVV VV._~ V—~~~ 
— 4
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APPENDIX I

We prove Theorem 2.

Consider equation (2.8), repeated below

en p (Z(A) AEQ 1 j~~,p)

N 1 ~~ l ~~ 2 2V 

= — ~~~~~ n 2 r r p —~~~ E [.enhIH (e ,e
AE .QA

+ (l/p) I Iz(X) 1 ) 2/I IH(e 
l,e 2,~ ) 11

2] (1)

or

p ( Z ( A ) ,  A€ Q~~)~~,p )

N/2 N 1 ~~ l ~~2= (1/2 11) exp {- ~~ np - -
~~ E ~ n I  I H ( e  , e ,* 1 1

AE c~A

(1/2 p ) 
~ I lz(A ) 11 2

/I IIl(e
J 

,e
J A

2
,~~) I

A € ~ A

= (1/271)Nh/2 ex ç [~ - G (~~,p)] (2)

where
1 

j A  jA
G ( 4 ~, P )  = — [ Ve f l ~ + E £n Iln (e ~,e 

2
~~~) l t

2
— A € ~2 A . . 

-

+ (1/NP) E 1 )z(X) ))
2
/) IH( 1 e 2

~~~) 11
2]

A EQ A
Let 0T (~ T~~)

To compute p ( Z ( A ) ,  XE c1 A ) we in tegrate  p ( Z ( A ) ,  A E
~x l O )  over

0 by using a prior probabil i ty densi ty  p ( O ) :

V. V.— —_  -~~~~~~~~~~~~~~~~~~~ - V.V. V.
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p (Z(A ), AE
~
1x)

= fp (z(A), AEQ x IO) p (0)dO (4)

Substituting (2) in (4) we have

p (Z(A), AEQ
x)

= (l/27T )N~
’2
fexp [~ G (e)lp (e)do (5)

Expanding G(0) in Taylor ’s series in 0 about 0 = ~ where

O = max G(O)— 0 —

we have

LHS of (5)

= (l/271)N~
”2fexp (~ ) [G(~ ) + [V

0
G ( 0 )  ] T (0~~~)

-V

V 

+ ( e _ e ) T [v~ o 
G ( 0 ) ]  ( 0~~~) + ...l p(O)dO

- V - V  
i j  0=8

( 6 )

By using the definition of ~ the linear term in the exponent

vanishes. Thus the Li-IS of (6) reduces to

= (l/271)N/’2exp [(~ )G(~)] x

fexp [(~ ) 
(O_ .

~)
T(V2 G(0)] (0— ~ ) + . . .1p (0)dO

0 . 0 .  
-V o=~ -V -V -V -V

1 J

= (l)N/2 [(N)G(~)j (~) (
271)(m+1)/2

1 
+ 0(1/N)

{det [V~ 0 (G(0))] }1/2

i i  -V
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Observing that

— jA jA
G( 0 ) = — [~ n~ + (1/N ) E £ n ) ) H ( e  1, e 2~~~) j J 2 ]

A E
~ A

+1] (8)

we obtain Theorem 2.
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APPENDIX II

Lemma: The Jacobian of the transformation from the obser-

vation set (y(s) , s€Q
5

) to the finite Fourier transform

(Z(A), A € ~ x ) is unity .

Proof: For s implici ty, we consider a 4x4 case. We have

Z(A 1, A
2) = (N1)~~~ E ~~~~~~~~~~~~~~~~~~~~~~~

S

For a 4x4 case , N 1 = 4,

= {i ,j} l~ i, j~~4

and 
~A = ~+1}, 

l~ i , j~~4

In matrix notation ,

z = j y

where Z and Y are vectors of f i n i t e  Fourier  t r a n s f o r m s  and

observations arranged in lexicographic order. The matrix

J (16x16) can be written as

- 
. 1 1  .2 71 .3 i ~ 

-

A e~~~2 A e~~~2 A e~~T A

.77 .3i~ .71 .371
e~~~~2 A e~~~TA e~~~2 A e~~~ 2 A

= ( 1/4)
. 11 . .3 71

e~~~~~A e~~~~~A e~~~
2
~ A e~~~2 A

. 371 . 3ii .3ir .3ir
e~~~ 2 A e~~~T A e~~~2A e~~~ 2 A

L —_ __ _ _  _ _  - _ __ _ _ _  V.
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where

- . . 3 - r i  . TI

e~~
71 

e~~~T e~~~
2
~ ~~~~

. 11 .3 ir .11

A = e~~~2 e 3
~ e 3T e 3

~

. 71

~~~~~ e J y  e~~
71 

~~~~

. 1 1  . 17 . 11 . 17

e~~ 2 e~~2 ~~~~

Using Kronecker product notation,

~~ = ~~~~~~~~

where
.211

B = ~~~~~ A

Hence

det B = det A

From a Theorem regarding the characteristic roots of

Kronecker products [25] the characteristic roots of AxE

are 
~~~~~~~ where a .  are the characterist ic roots of A and

b. are the characteristic roots of B. Hence ,
J —

det J = ( 1/4) 16 rr a.b . = (l/4)16 (det A)4(det B)4
-V 

l~ i,j~~4 ~

= 1

by direct evaluation of det A.

I
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